CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education CHEMISTRY 0620/03 Paper 3 October/November 2003 1 hour 15 minutes Candidates answer on the Question Paper. No Additional Materials are required. #### **READ THESE INSTRUCTIONS FIRST** Write your name, Centre number and candidate number at the top of this page. Write in dark blue or black pen in the spaces provided on the Question Paper. You may use a pencil for any diagrams, graphs or rough working. Do not use staples, paper clips, highlighters, glue or correction fluid. ### Answer all questions. The number of marks is given in brackets [] at the end of each question or part question. A copy of the Periodic Table is printed on page 12. If you have been given a label, look at the details. If any details are incorrect or missing, please fill in your correct details in the space given at the top of this page. Stick your personal label here, if provided. | For Exam | iner's Use | |----------|------------| | 1 | | | 2 | | | 3 | | | 4 | | | 5 | | | TOTAL | | This document consists of 10 printed pages and 2 blank pages. SP (SM) S34684/4 © CIE 2003 | 1 | Ammonia contains the elements nitrogen and hydrogen. It is manufactured from these elements | |---|---| | | in the Haber process. | $$N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g)$$ The forward reaction is exothermic. | (a) | (i) | Nitrogen is obtained from liquid air by fractional distillation. Why does this technique separate liquid oxygen and nitrogen? | | | | | | | |-----|-------|---|---|--------|--------|-------|-------|------------------------| | | | | | | | | | | | | (ii) | Name two raw materials from which hydrogen is manufactured. | | | | | | | | (b) | | table sh | nows how the percentage of | | | | | um mixture varies with | | | | | percentage ammonia | 8 | 12 | 15 | 20 | | | | | | pressure/atm | 200 | 300 | 400 | 500 | | | | (i) | Explain why the percentage of ammonia increases as the pressure increases. | | | | | | | | | | | | | | | | [2] | | | (ii) | How wo | ould the percentage of ammo
ver temperature?
your answer. | [2] | | | (iii) | State tv | vo of the reaction conditions | s used | in the | Haber | Proce | ess. | | (c) | Amı | monia is a base. | |-----|------|--| | | (i) | Name a particle that an ammonia molecule can accept from an acid. | | | (ii) | Write an equation for ammonia acting as a base. | | (d) | | en aqueous solutions, 0.1mol/dm ³ , of sodium hydroxide and ammonia, describe how could show that ammonia is the weaker base. | | | | [2] | | (e) | Ano | ther compound that contains nitrogen and hydrogen is hydrazine, N_2H_4 . | | | (i) | Draw the structural formula of hydrazine. Hydrogen can form only one bond per atom but nitrogen can form three. | | | (ii) | Draw a diagram that shows the arrangement of the valency electrons in one molecule of hydrazine. Hydrazine is a covalent compound. Use x to represent an electron from a nitrogen atom. Use o to represent an electron from a hydrogen atom. | - 2 Some of the factors that can determine the rate of a reaction are concentration, temperature and light intensity. - (a) A small piece of calcium carbonate was added to an excess of hydrochloric acid. The time taken for the carbonate to react completely was measured. $$\mathsf{CaCO}_3(\mathsf{s}) \ + \ 2\mathsf{HC}l(\mathsf{aq}) \ \longrightarrow \ \mathsf{CaC}l_2(\mathsf{aq}) \ + \ \mathsf{CO}_2(\mathsf{g}) \ + \ \mathsf{H}_2\mathsf{O}(\mathsf{I})$$ The experiment was repeated at the same temperature, using pieces of calcium carbonate of the same size but with acid of a different concentration. In all the experiments an excess of acid was used. | concentration of acid/mol dm ⁻³ | 4 | 2 | 2 | | |--|---|----|---|-----| | number of pieces of carbonate | 1 | 1 | 2 | 1 | | time/s | | 80 | | 160 | | (i) | Complete the table (assume the rate is proportional to both the acid conce | entration | |-----|--|-----------| | | and the number of pieces of calcium carbonate). | [3] | | (ii) | Explain why the reaction rate would increase if the temperature was increased. | |-------|--| | | [2] | | (iii) | Explain why the rate of this reaction increases if the piece of carbonate is crushed to a powder. | | | [1] | | (iv) | Fine powders mixed with air can explode violently. Name an industrial process where there is a risk of this type of explosion. | | | | | | [1] | **(b)** Sodium chlorate(I) decomposes to form oxygen and sodium chloride. This is an example of a photochemical reaction. The rate of reaction depends on the intensity of the light. $$2 \text{NaC} l \text{O}(\text{aq}) \ \longrightarrow \ 2 \text{NaC} l (\text{aq}) \ + \ \text{O}_2(\text{g})$$ | (i) | Describe how the rate of this reaction could be measured. | |-----|---| | | | | | เอา | | | [2] | | | (ii) | How could you show that this reaction is photochemical? | |-----|-------|--| | | | | | | | [1] | | (c) | | otosynthesis is another example of a photochemical reaction. Glucose and more applex carbohydrates are made from carbon dioxide and water. | | | (i) | Complete the equation. | | | | $6CO_2 + 6H_2O \rightarrow C_6H_{12}O_6 + \dots$ [2] | | | (ii) | Glucose can be represented as | | | | но — он | | | | Draw the structure of a more complex carbohydrate that can be formed from glucose by condensation polymerisation. | [2] | | | | | | | | nde is the common ore of zinc. It is usually found mixed with an ore of lead and f silver. | | (a) | (i) | Describe how zinc blende is changed into zinc oxide. | | | | | | | | [2] | | | (ii) | Write an equation for the reduction of zinc oxide by carbon. | | | | [2] | | (| (iii) | The boiling point of lead is 1740°C and that of zinc is 907°C . Explain why, when both oxides are reduced by heating with carbon at 1400°C , only lead remains in the furnace. | | | | | | | | [2] | 3 **(b)** A major use of zinc is to make diecasting alloys. These contain about 4% of aluminium and they are stronger and less malleable than pure zinc. (i) Give one other large scale use of zinc. | F 4 7 | |---------| | 171 | |
 • | (ii) Describe the structure of a typical metal, such as zinc, and explain why it is malleable. (iii) Suggest why the introduction of a different metallic atom into the structure makes the alloy stronger than the pure metal. - (c) A solution of an impure zinc ore contained zinc, lead and silver(I) ions. The addition of zinc dust will displace both lead and silver. - (i) The ionic equation for the displacement of lead is as follows. Which change is reduction? Explain your answer. |
 | | |------|-----| |
 | [2] | (ii) Write an ionic equation for the reaction between zinc atoms and silver(I) ions.[2] - **4** Esters occur naturally in plants and animals. They are manufactured from petroleum. Ethyl ethanoate and butyl ethanoate are industrially important as solvents. - (a) (i) Explain the term solvent. | F.4.7 | |-------| | 171 | | | (ii) Give the formula of ethyl ethanoate. [1] (iii) Ethyl ethanoate can be made from ethanol and ethanoic acid. Describe how these chemicals can be made. ethanol from ethene |
[2] | |---------| ethanoic acid from ethanol |
 |
 | | |------|------|--| | | | | (iv) Name two chemicals from which butyl ethanoate can be made. (b) The following equation represents the alkaline hydrolysis of a naturally occurring ester. (i) Which substance in the equation is an alcohol? Underline the substance in the equation above. [1] (ii) What is the major use for compounds of the type $\mathrm{C}_{17}\mathrm{H}_{35}\mathrm{COONa}$?[1] 0620/03/O/N/03 **[Turn over** (c) A polymer has the structure shown below. | | (i) | What type of polymer is this? | |-----|-------|---| | | (ii) | Complete the following to give the structures of the two monomers from which the above polymer could be made. | | | | | | | | | | | | [2] | | (d) | was | ers are frequently used as solvents in chromatography. A natural macromolecule hydrolysed to give a mixture of amino acids. These could be identified by omatography. | | | (i) | What type of macromolecule was hydrolysed? | | | | [1] | | | (ii) | What type of linkage was broken by hydrolysis? | | | | [1] | | | (iii) | Explain why the chromatogram must be sprayed with a locating agent before the amino acids can be identified. | | | | | | | | [1] | | | (iv) | Explain how it is possible to identify the amino acids from the chromatogram. | | | | | | Sulph | nur (| dioxide, SO_2 , and sulphur trioxide, SO_3 , are the two oxides of sulphur. | | |----------------|-------|--|------| | | | ohur dioxide can kill bacteria and has bleaching properties. Give a use of sulphide that depends on each of these properties. | าur | | (| (i) | ability to kill bacteria | [1] | | (i | ii) | bleaching properties | [1] | | (b) S | Sulp | ohur trioxide can be made from sulphur dioxide. | | | (| (i) | Why is this reaction important industrially? | | | | | | .[1] | | (i | ii) | Complete the word equation. | | | | | sulphur dioxide + → sulphur trioxide | [1] | | (ii | ii) | What are the conditions for this reaction? | | | | | | | | | | | .[2] | | (c) S | Sulp | phur dioxide is easily oxidised in the presence of water. | | | | | $SO_2 + 2H_2O - 2e^- \rightarrow SO_4^{2-} + 4H^+$ | | | (i | (i) | What colour change would be observed when an excess of aqueous sulph dioxide is added to an acidic solution of potassium manganate(VII)? | าur | | | | | [2] | | (i | ii) | To aqueous sulphur dioxide, acidified barium chloride solution is added. The mixturemains clear. When bromine is added, a thick white precipitate forms. What is twhite precipitate? Explain why it forms. | | | | | | | | | | | [3] | | (d) S | Sulp | phur dioxide reacts with chlorine in an addition reaction to form sulphuryl chloride | | | | | $SO_2 + Cl_2 \rightarrow SO_2Cl_2$ | | | | | g of sulphur dioxide was mixed with 14.2 g of chlorine. The mass of one mole ${\rm C}l_2$ is 135 g. | of | | C | Calc | culate the mass of sulphuryl chloride formed by this mixture. | | | C | Calc | culate the number of moles of SO ₂ in the mixture = | | | C | Calc | culate the number of moles of Cl_2 in the mixture = | | | V | Nhi | ch reagent was not in excess? | | | F | How | many moles of SO_2Cl_2 were formed = | | | C | Calc | culate the mass of sulphuryl chloride formed = g | [5] | 5 ## **BLANK PAGE** ## **BLANK PAGE** DATA SHEET The Derivative Table of the Elements | Liftium 3 Liftium 3 Sodium Sodium 11 | 9 Beryllium 4 24 Mgg Magnesium 12 | | | | | = | T T Hydrogen | Gic I abl | Group A Hydrogen Table of the Elements A Hydrogen Table of the Elements A Hydrogen Table of the Elements A Hydrogen | Emen | ফ্ | 11 Boron 5 Auminium Aluminium 13 | Carbon 6 Carbon 8 Silfron 14 Silfron 14 Silfron 14 Silfron 14 Silfron 14 Silfron 14 Silfron 16 Carbon 16 Silfron 17 Silfr | Nitrogen 7 31 31 Phosphorus 15 | 16 Oxygen 8 32 32 Sulphur 16 Sulphur 16 | VIII 19 Fluorine 9 35.5 C1 Chlorine | 4 He Hellum 2 Hellum 2 20 Neon 10 Neon 10 AT Argon 18 | |--------------------------------------|---|------------------------------------|----------------------------------|----------------------------------|------------------------------|-----------------------------|------------------------|---------------------------|--|---------------|-----------------------------------|--------------------------------------|--|----------------------------------|---|--------------------------------------|---| | 39
K
Potassium | 40 Ca Calcium | 45
Sc
Scandium
21 | 48 T Titanium | 51
V
Vanadium
23 | 52
Cr
Chromium | 55
Mn
Manganese
25 | 56
Fe
Iron | 59
Co
Cobalt | 59 N Nickel 28 | 64
Copper | 65 Zn Zinc 30 | 70 Ga Gallium 31 | 73 Ge Germanium | 75 AS Arsenic 33 | 79
Selenium | | 84
Kr
Krypton
36 | | 85
Rb
Rubidium
37 | St Strontium | 89 Y | 91 Zr Zirconium 40 | 93
Nobium
41 | 96
Mo
Molybdenum
42 | Tc
Technetium
43 | Bu Ruthenium 44 | 103
Rhodium
45 | 106 Pd Palladium 46 | | 112
Cd
Cadmium
48 | 115 In Indium | | 122 Sb Antimony 51 | 128 Te Tellurium | | Xe Xenon 54 | | Cs Caesium | 137
Ba
Barium
56 | 139 La
Lanthanum
57 * | 178
#
Hafnium
72 | 181 Ta Tantalum 73 | 184 W Tungsten 74 | 186 Re Rhenium 75 | | | 195 Pt Patinum | | 201
Hg
Mercury
80 | 204 T1 Thallium 81 | 207 Pb Lead 82 | 209 Bi smuth | | At
Astatine | Radon
86 | | Fr
Francium | 226 Ra Radium | 227
Ac
Actinium
89 | | | | | | | | | | _ | | | | | | | 1 Le | *58-71 Lanthanoid series
†90-103 Actinoid series | series | | 140 Cer ium 58 | Pr
Praseodymium
59 | 144 Nd Neodymium 60 | Pm
Promethium
61 | Samarium 62 | 152
Eu
Europium
63 | Gadolinium 64 | 159 Tb Terbium 65 | 162
Dy
Dysprosium
66 | 165
Ho
Holmium
67 | 167
Er
Erbium
68 | 169
Tm
Thulium
69 | Yb Ytterbium 70 | 175
Lu
Lutetium
71 | | | ĺ | | | | | | | | | | | | | ı | |----------------------------|---------------|--------------------|---------------|-----------------|-----------------|-----------------|--------------|-----------------|-------------------|-------------------|----------------|--------------------|-----------------|---| | 00.200 | 140 | 141 | 144 | | 150 | 152 | 157 | | 162 | | 167 | 169 | 173 | | | iold series | S | Ą | P | Pm | Sm | Eu | gg | Д | ۵ | 운 | ш | Ę | ΛÞ | | | ad selles | Cerium | Praseodymium | Neodymium | Promethium | Samarium | Europium | Gadolinium | | Dysprosium | | Erbium | Thulium | Ytterbium | | | Г | 28 | 59 | 09 | 61 | 62 | 63 | 64 | 65 | 99 | 67 | 89 | 69 | 20 | | | a = relative atomic mass | 232 | | 238 | | | | | | | | | | | | | X = atomic symbol | ۲ | Ра | ⊃ | 8
N | Pu | Am | CB | 路 | ర | Es | Fm | Md | 8 | | | b = proton (atomic) number | Thorium
90 | Protactinium
91 | Uranium
92 | Neptunium
93 | Plutonium
94 | Americium
95 | Curium
96 | Berkelium
97 | Californium
98 | Einsteinium
99 | Fermium
100 | Mendelevium
101 | Nobelium
102 | | Key **Lr** Lawrendium 103 The volume of one mole of any gas is 24 dm³ at room temperature and pressure (r.t.p.).